
9. COUPLED MULTI-PHYSICS PROBLEMS 

Abstract — A three-dimensional mortar method for solving 
fully coupled electro-thermo-mechanical contact problems is 
presented. The formulation is based on the Cell Method which 
is founded on the duality principle. Contacting domains are 
linked together by introducing a new reference frame, i.e. the 
mortar surface. Field discontinuities across contact interfaces 
are simulated by suitable constitutive operators. Compatibility 
constraints are imposed by dual Lagrange multipliers defined 
on the mortar surface. Coupled non-linear algebraic equations 
are cast into a saddle point problem, which can be reduced to a 
positive definite system by exploiting duality. In such a way 
standard preconditioned iterative solvers can be used.   

I. INTRODUCTION 

Contact problems arise in wide variety of engineering 
applications such as metal forming, RSW, and connectors. 
The numerical solution of these problems is particularly 
complex due to the non-linear behavior of fully coupled 
PDEs. To date only a few methods encompassing multiple 
physics contact effects have been proposed [1][2]. Domain 
decomposition methods (DDMs) are effective when solving 
contact problems since the computational domain is split 
into several subdomains (e.g. contacting parts) coupled 
together by suitable projection operators. Most of DDMs 
are based, however, on FEM formulations which require a 
careful definition of trace operators and Sobolev spaces to 
ensure the convergence of numerical procedures [3]. The 
Cell Method (CM) offers a different perspective: equations 
are expressed directly in algebraic form by means of 
integral variables and discrete operators [4]. This feature 
makes the CM well suited for multiphysics problems [5].  

A three-dimensional (3D) mortar cell method (MCM) 
for fully coupled electrical-thermal contact problems has 
been recently presented [6]. Its basic advantage compared 
to mortar FEMs is that the final system (in saddle point 
form) can be reduced to a positive definite system, which 
can be easily solved with efficient preconditioned iterative 
methods like PCG. The MCM is extended here to elasticity 
in order to simulate more realistic contact models. A static 
multibody frictionless contact with small displacements and 
linear elastic materials is analyzed. The following physics 
couplings are taken into account: (i) displacements are 
influenced by thermal field due to deformation stresses and 
Young’s modulus; (ii) thermal generation is due to Joule 
heating depending on both temperature and electric scalar 
potential distributions; (iii) the electric conductivity 
decreases with temperature; (iv) electric and thermal contact 
conductivity distributions are pressure dependent.        

II.  MORTAR FORMULATION 

The computational domain is depicted in Fig. 1: A two 
body contact problem is considered. Contacting bodies Ð1, 
Ð2 are meshed with non-conforming grids and continuity 
between subdomains is enforced by appropriate Lagrange 
multipliers, which are defined on the mortar surface ¡m 
interleaved between contact interfaces ¡c1, ¡c2 (Fig. 1). The 
bottom surface is constrained (Dirichlet BCs); Neumann 
conditions are applied on @Ð1 (t: traction field; J: electric 
current density; q: heat flux density). fb are external body 
forces applied on the bulk domain Ð = Ð1 [Ð2. 

 
 

Fig. 1. Two body multiphysics contact problem. 

A. Contact problem on the mortar surface 

In discrete CM formulations problem variables are integral 
quantities (potentials, line integrals, and fluxes) defined on 
dual cell complexes. The duality principle (DP) is the basic 
idea of the CM: constitutive operators are mappings linking 
variables of different cell complexes. It is shown here that 
contact interfaces can be coupled symmetrically by the DP. 
The mortar surface as bulk domains is discretized in dual 
cell simplexes, where Lagrange multipliers (potentials and 
fluxes) are defined: electric potentials v§

m
, temperatures µ§

m
, 

and displacements u§
m

 on primal nodes; currents jm, heat 
fluxes qm, and tractions tm on dual faces. Degrees of 
freedom are projected together with geometric quantities: 
potentials are mapped from ¡m to ¡c1 and ¡c2; vice versa, 
fluxes are mapped from ¡c1 and ¡c2 to ¡m. For the sake of 
brevity, in the following the electric coupling is presented 
only; thermal and mechanical problems are closely similar.  

A Cell Method Formulation of Three Dimensional Electro-Thermo-
Mechanical Contact Problems with Mortar Discretization 

Federico Moro1, Piergiorgio Alotto1, Fabio Freschi2, and Massimo Guarnieri1  
1 Dipartimento di Ingegneria Elettrica, Università di Padova, Via Gradenigo 6/A, I-35131 Padova, Italy 

2 Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy 

moro@die.unipd.it 



9. COUPLED MULTI-PHYSICS PROBLEMS 

Kirchhoff’s voltage law across the contact is imposed by 
means of the projection matrix P  as: 
 

[vm] = P vc          (1) 
 
where [vm] = v+

m
¡ v¡

m
 are potential jumps across ¡m and 

vc are potentials on contact interfaces, selected from the 
global array of potentials as vc = Q v. Kirchhoff’s current 

law is imposed by a dual projection operator eP = PT, as:  
 

eP jm + jc = 0        (2) 
 
which makes it possible to obtain a symmetric coupling. 
Potential jumps across contact interfaces can be simulated 
by introducing appropriate constitutive relationships, e.g. 

 
jm = ¡M¾c [vm]        (3) 

 
where the (diagonal) matrix M¾c is built by integrating the 
contact conductivity over ¡m. Conductivity is estimated 
from statistical relationships depending on contact pressure, 
surface roughness and material hardness parameters [7].  

In the mechanical problem displacements are assumed to 
be continuous across contact interfaces, i.e. [um] = 0.      

B. Discrete problem in bulk domains 

Degrees of freedom in the electric conduction problem are 
voltages e on primal edges and currents j on dual faces. 
Voltages are mapped to the dual complex by Ohm’s law:  
 

j = M¾(µ) e         (4)   
 
where coefficients depends on temperature µ. Voltages are 
expressed in terms of potentials by Kirchhoff’s voltage law 
e = ¡G v, where G is the gradient operator. The balance 
equation written for dual cells is Kirchhoff’s current law: 
 

eD j + jc = js         (5) 
 
where eD = ¡GT is the divergence operator, js are source 
currents, and jc are currents on ¡c1 and ¡c2. Constitutive 
and continuity equations are assembled together as follows: 
 

GTM¾(µ)G v + jc = js               (6) 
 
The thermal stiffness matrix can be assembled like (6) with 
a constant conductance operator instead: 
 

GTM¸G µ + qc = qs + w(v; µ)    (7) 
 
where qc are heat fluxes at contact interfaces, qs are source 
fluxes and w are internal heat generations inside dual cells. 
The discrete formulation of elasticity is widely discussed in 
[8] and extended to coupled problems in [5]. By introducing 
covector-valued (stresses ¾, tractions t) and vector-valued 

quantities (strains ², displacements u) force equilibrium can 
be stated in the form of a discrete balance law:  
 

eD ¾ + tc = ts + fb + fth(µ)     (8) 
 
where tc are traction at contact interfaces, ts are source 
tractions, fb are external body forces, and fth are thermal 
deformations. Strains are mapped to stresses by means of 
the elasticity tensor Me(µ), which depends on temperature. 
The stiffness matrix is obtained as in the other problems: 
 

GTMe(µ)G u + tc = ts + fb + fth(µ)   (9) 

C. Coupled problem in saddle point form 

Using the proposed mortar approach the final non-linear 
system can be assembled into saddle point form, that is 
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where M¾c¡1 and M¸c¡1 are diagonal resistance matrices, 
and ¦ = PQ is a projection operator. The fully coupled 
system cannot be solved directly since it is badly scaled and 
conditioned. It can be reduced to a well conditioned system 
by eliminating Lagrange multipliers according to Schur’s 
complement method. Moreover, displacements should lie in 
the kernel of the projection operator since mechanical field 
is assumed to be continuous across contact interfaces.  
 The solution strategy adopted for the non-linear system is 
discussed more deeply in the paper, where formulation and 
implementation details are provided. Numerical results are 
compared with those obtained by a commercial software 
package for analyzing multiphysics problems.      
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