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Abstract — A three-dimensional mortar method for sdving
fully coupled electro-thermo-mechanical contact prblems is
presented. The formulation is based on the Cell Mabd which
is founded on the duality principle. Contacting donains are
linked together by introducing a new reference frare, i.e. the
mortar surface. Field discontinuities across contécinterfaces
are simulated by suitable constitutive operators. @mpatibility
constraints are imposed by dual Lagrange multiplies defined
on the mortar surface. Coupled non-linear algebraiequations
are cast into a saddle point problem, which can beeduced to a
positive definite system by exploiting duality. Insuch a way
standard preconditioned iterative solvers can be u=l.

. INTRODUCTION

Contact problems arise in wide variety of enginegri
applications such as metal forming, RSW, and caongc
The numerical solution of these problems is paldity
complex due to the non-linear behavior of fully ptad
PDEs. To date only a few methods encompassing plaulti
physics contact effects have been proposed [1[}2main
decomposition methods (DDMs) are effective whewiag|
contact problems since the computational domaispig
into several subdomains (e.g. contacting parts)pleou
together by suitable projection operators. MostD&iMs
are based, however, on FEM formulations which negai
careful definition of trace operators and Sobolpaces to
ensure the convergence of numerical proceduresT[33.
Cell Method (CM) offers a different perspectiveuations

are expressed directly in algebraic form by meahfs o

integral variables and discrete operators [4]. Te@ture
makes the CM well suited for multiphysics problg&is

A three-dimensional (3D) mortar cell method (MCM)

for fully coupled electrical-thermal contact prote has
been recently presented [6]. Its basic advantagepaced
to mortar FEMs is that the final system (in sadgteént
form) can be reduced to a positive definite systesnich

can be easily solved with efficient preconditiorittative
methods like PCG. The MCM is extended here to ielast
in order to simulate more realistic contact modalstatic
multibody frictionless contact with small displacemts and
linear elastic materials is analyzed. The followjplgysics
couplings are taken into account: (i) displacemests
influenced by thermal field due to deformation stes and
Young's modulus; (ii) thermal generation is dueJaule
heating depending on both temperature and elestatar
potential distributions; (iii) the electric condivty

decreases with temperature; (iv) electric and théoontact
conductivity distributions are pressure dependent.

Il. MORTAR FORMULATION

The computational domain is depicted in Fig. 1wt
body contact problem is considered. Contacting émdi,
Qs are meshed with non-conforming grids and contynuit
between subdomains is enforced by appropriate bagra
multipliers, which are defined on thmortar surface I,
interleaved between contact interfages, I'.» (Fig. 1). The
bottom surface is constrained (Dirichlet BCs); Nenm
conditions are applied ofi2; (t: traction field;J: electric
current densityg: heat flux density)f, are external body
forces applied on the bulk domdih= 21 U Q.
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Fig. 1. Two body multiphysics contact problem.

A. Contact problem on the mortar surface

In discrete CM formulations problem variables aregral
guantities (potentials, line integrals, and fluxdsfined on
dual cell complexes. The duality principle (DP}hg basic
idea of the CM: constitutive operators are mappiimgsng
variables of different cell complexes. It is shohere that
contact interfaces can be coupled symmetricallyhieyDP.
The mortar surface as bulk domains is discretiredual
cell simplexes, where Lagrange multipliers (potastiand
fluxes) are defined: electric potentialg, temperatures,
and displacements;> on primal nodes; currents,, heat
fluxes ¢.,, and tractionst,, on dual faces. Degrees of
freedom are projected together with geometric dtiest
potentials are mapped frol,, to I'.; andTI'.,; vice versa,
fluxes are mapped fromi.; andI'.; to I',,,. For the sake of
brevity, in the following the electric coupling Fesented
only; thermal and mechanical problems are closetjar.
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Kirchhoff's voltage law across the contact is impdsby
means of the projection matriX as:

[Um] = P v (1)

where[v,,,] = v, — v, are potential jumps acros, and

v, are potentials on contact interfaces, selecteth ftioe
global array of potentials as. = @ v. Kirchhoff's current

law is imposed by a dual projection operatoe= PT, as:
P o +je =0 (2)

which makes it possible to obtain a symmetric cimgpl
Potential jumps across contact interfaces can relaied
by introducing appropriate constitutive relatioqshie.g.
j'rn = _Moc [U'rn] (3)

where the (diagonal) matriXZ,. is built by integrating the
contact conductivity ovef,,. Conductivity is estimated
from statistical relationships depending on congaessure,
surface roughness and material hardness pararfiéters

In the mechanical problem displacements are asstioned
be continuous across contact interfacesju,g} = 0.

B. Discrete problemin bulk domains

Degrees of freedom in the electric conduction pobare
voltagese on primal edges and currenfson dual faces.
Voltages are mapped to the dual complex by Ohmws la

j=M,(0)e 4
where coefficients depends on temperatur&'oltages are
expressed in terms of potentials by Kirchhoff'stage law

e = —G v, where@G is the gradient operator. The balance
equation written for dual cells is Kirchhoff's cant law:

-5] + jc = js (5)
where D = —GT is the divergence operatof, are source
currents, andj. are currents o'.; andI'.;. Constitutive
and continuity equations are assembled togethfallaws:

GT"M,(0)G v + je = js (6)

The thermal stiffness matrix can be assembled(Bkewith
a constant conductance operator instead:

GTMAG9+QC = (s —|—w(v,0) (7)

wheregq,. are heat fluxes at contact interfacgsare source

fluxes andw are internal heat generations inside dual cells.

The discrete formulation of elasticity is widelysdissed in
[8] and extended to coupled problems in [5]. Byadticing
covector-valued (stresses tractionst) and vector-valued

quantities (strains, displacements) force equilibrium can
be stated in the form of a discrete balance law:

l~)0+tc:t5+fb+fth(9) (8)

where t. are traction at contact interfaces, are source
tractions, f, are external body forces, arfg, are thermal
deformations. Strains are mapped to stresses bysrafa
the elasticity tensoi/.(6), which depends on temperature.
The stiffness matrix is obtained as in the othebfms:

GTM.(0)Gu+t.=ts+ fo + fin(0) 9)

C. Coupled problemin saddle point form

Using the proposed mortar approach the final noeali
system can be assembled into saddle point forrhigha

GTM,G (0] (0] —1T (0] (o) v Js
0] GTM\G 0] (0] —r 0] 0 qs +w
0] 0] GTM.G 0] 0] —a* u | | ts+ fot fin
I o) 0 My O (© Jm | 0
[0) 11 [0) [0) My [0) Gm W
(0] (0] 11 0 (0] 0 Um, 0
(10)

where M,.-. and M,.-: are diagonal resistance matrices,
and II = PQ is a projection operator. The fully coupled
system cannot be solved directly since it is badbled and
conditioned. It can be reduced to a well condittbegstem
by eliminating Lagrange multipliers according toh8cs
complement method. Moreover, displacements shaeilioh |
the kernel of the projection operator since medwrfield
is assumed to be continuous across contact inesrfac

The solution strategy adopted for the non-lingatesn is
discussed more deeply in the paper, where fornamand
implementation details are provided. Numerical ltssare
compared with those obtained by a commercial soéwa
package for analyzing multiphysics problems.
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